How do you integrate int te^-ttet by integration by parts method?

1 Answer
Aug 2, 2016

= -e^(-t)(t+1) + C=et(t+1)+C

Explanation:

For u, vu,v functions of tt,

int uv'dt = uv - int u'vdt

u(t) = t implies u'(t) = 1

v'(t) = e^(-t) implies v(t) = -e^(-t)

intte^(-t)dt = -te^(-t) + int e^(-t)dt

=-te^(-t) - e^(-t) + C = -e^(-t)(t+1) + C