How do you integrate int te^-t∫te−t by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Euan S. Aug 2, 2016 = -e^(-t)(t+1) + C=−e−t(t+1)+C Explanation: For u, vu,v functions of tt, int uv'dt = uv - int u'vdt u(t) = t implies u'(t) = 1 v'(t) = e^(-t) implies v(t) = -e^(-t) intte^(-t)dt = -te^(-t) + int e^(-t)dt =-te^(-t) - e^(-t) + C = -e^(-t)(t+1) + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 50195 views around the world You can reuse this answer Creative Commons License