How do you integrate int thetasecthetatantheta by parts?

1 Answer
Feb 4, 2017

thetasectheta-ln|sectheta+tantheta|+C

Explanation:

the parts formula

intuv'd theta=uv-intvu'd theta

u=theta=>u'=1

v'=secthetatantheta=>v=sectheta

I=intuv'd theta=uv-intvu'd theta=thetasectheta-intsecthetad theta

the problem now is to integrate intsecthetad theta

proceed as follows

intsecthetad theta=int((sectheta)xx((sectheta+tantheta)/(sectheta+tantheta)))d theta

int((sec^2theta+secthetatantheta)/(sectheta+tantheta))d theta

the numerator is the derivative of the denominator, so we have a log integral

:.intsecthetad theta=ln|sectheta+tantheta|

the original integral is now complete

I=thetasectheta-intsecthetad theta

=>I=thetasectheta-ln|sectheta+tantheta|+C