How do you integrate ∫t3√t−4dt?
1 Answer
Jan 29, 2017
Explanation:
I=∫t3√t−4.dt
Apply the substitution
I=∫(u+4)3√u.du
We can write
I=∫(u+4)u13.du
I=∫u43.du+4∫u13.du
Integrate both using the rule
I=u7373+4(u4343)+C
I=37u73+3u43+C
Since
I=37(t−4)73+3(t−4)43+C