How do you integrate t3t4dt?

1 Answer
Jan 29, 2017

37(t4)73+3(t4)43+C

Explanation:

I=t3t4.dt

Apply the substitution u=t4. This also implies that t=u+4 and du=dt. Then:

I=(u+4)3u.du

We can write 3u with a fractional exponent and then distribute:

I=(u+4)u13.du

I=u43.du+4u13.du

Integrate both using the rule un.du=un+1n+1+C:

I=u7373+4(u4343)+C

I=37u73+3u43+C

Since u=t4:

I=37(t4)73+3(t4)43+C