How do you integrate (x+1)2xdx?

1 Answer
Dec 10, 2016

2(2x)32(x+3)5+C

Explanation:

I=(x+1)2xdx

Let u=2x. This implies that du=dx. Also note that u=x2, so u+3=x+1. Then:

I=(u+3)u(du)=(u3)udu

Expanding the square root as u12:

I=(u(u12)3u12)du=(u323u12)du

Now using undu=un+1n+1+C:

I=u52523(u3232)=25u522u32

Factoring and making it look nice:

I=u32(25u2)=u32(2u10)5=2u32(u5)5

From u=2x:

I=2(2x)32((2x)5)5=2(2x)32(x+3)5+C