How do you integrate ∫(x+1)√2−xdx?
1 Answer
Dec 10, 2016
Explanation:
I=∫(x+1)√2−xdx
Let
I=∫(−u+3)√u(−du)=∫(u−3)√udu
Expanding the square root as
I=∫(u(u12)−3u12)du=∫(u32−3u12)du
Now using
I=u5252−3(u3232)=25u52−2u32
Factoring and making it look nice:
I=u32(25u−2)=u32(2u−10)5=2u32(u−5)5
From
I=2(2−x)32((2−x)−5)5=−2(2−x)32(x+3)5+C