Let u = 2x - 1u=2x−1. Then du = 2dxdu=2dx and dx = 1/2dudx=12du.
int(x^2 - 1)/sqrt(u) * 1/2du∫x2−1√u⋅12du
We want to get rid of the x's. x = (u + 1)/2x=u+12, so x^2 = ((u + 1)/2)^2x2=(u+12)2
int(((u + 1)/2)^2 - 1)/sqrt(u) * 1/2du∫(u+12)2−1√u⋅12du
Expand:
1/2int(((u^2 + 2u + 1)/4) - 1)/sqrt(u)du12∫(u2+2u+14)−1√udu
1/2int(u^2 + 2u + 1 - 4)/(4sqrt(u))du12∫u2+2u+1−44√udu
1/8int(u^2 + 2u - 3)/sqrt(u)18∫u2+2u−3√u
1/8int(u^2/sqrt(u) + (2u)/sqrt(u) - 3/sqrt(u))du18∫(u2√u+2u√u−3√u)du
1/8int(u^(3/2) + 2u^(1/2) - 3u^(-1/2))du18∫(u32+2u12−3u−12)du
1/8(2/5u^(5/2) + 4/3u^(3/2) - 6u^(1/2))18(25u52+43u32−6u12)
1/20u^(5/2) + 1/6u^(3/2) - 3/4u^(1/2)120u52+16u32−34u12
1/20(2x - 1)^(5/2) + 1/6(2x - 1)^(3/2) - 3/4(2x - 1)^(1/2) + C120(2x−1)52+16(2x−1)32−34(2x−1)12+C
Hopefully this helps!