How do you integrate int (x^2-1)/sqrt(2x-1)dxx212x1dx?

2 Answers
Jan 6, 2017

The answer is 1/20(2x - 1)^(5/2) + 1/6(2x - 1)^(3/2) - 3/4(2x - 1)^(1/2) + C120(2x1)52+16(2x1)3234(2x1)12+C

Explanation:

Let u = 2x - 1u=2x1. Then du = 2dxdu=2dx and dx = 1/2dudx=12du.

int(x^2 - 1)/sqrt(u) * 1/2dux21u12du

We want to get rid of the x's. x = (u + 1)/2x=u+12, so x^2 = ((u + 1)/2)^2x2=(u+12)2

int(((u + 1)/2)^2 - 1)/sqrt(u) * 1/2du(u+12)21u12du

Expand:

1/2int(((u^2 + 2u + 1)/4) - 1)/sqrt(u)du12(u2+2u+14)1udu

1/2int(u^2 + 2u + 1 - 4)/(4sqrt(u))du12u2+2u+144udu

1/8int(u^2 + 2u - 3)/sqrt(u)18u2+2u3u

1/8int(u^2/sqrt(u) + (2u)/sqrt(u) - 3/sqrt(u))du18(u2u+2uu3u)du

1/8int(u^(3/2) + 2u^(1/2) - 3u^(-1/2))du18(u32+2u123u12)du

1/8(2/5u^(5/2) + 4/3u^(3/2) - 6u^(1/2))18(25u52+43u326u12)

1/20u^(5/2) + 1/6u^(3/2) - 3/4u^(1/2)120u52+16u3234u12

1/20(2x - 1)^(5/2) + 1/6(2x - 1)^(3/2) - 3/4(2x - 1)^(1/2) + C120(2x1)52+16(2x1)3234(2x1)12+C

Hopefully this helps!

Nov 15, 2017

int (x^2-1)/sqrt(2x-1)*dxx212x1dx

=1/4*int (4x^2-4)/sqrt(2x-1)*dx144x242x1dx

=1/4*int ((2x)^2-4)/sqrt(2x-1)*dx14(2x)242x1dx

After using u=sqrt(2x-1)u=2x1, 2x=u^2+12x=u2+1, 2dx=2u*du2dx=2udu or dx=u*dudx=udu transforms, this integral became

1/4*int ((2x)^2-4)/sqrt(2x-1)*dx14(2x)242x1dx

=1/4*int ((u^2+1)^2-4)/u*(u*du)14(u2+1)24u(udu)

=1/4*int (u^4+2u^2-3)*du14(u4+2u23)du

=1/4*(u^5/5+(2u^3)/3-3u)+C14(u55+2u333u)+C

=u^5/20+u^3/6-(3u)/4+Cu520+u363u4+C

=1/20*(2x-1)^(5/2)+1/6*(2x-1)^(3/2)-3/4*sqrt(2x-1)+C120(2x1)52+16(2x1)32342x1+C