Integration by parts is
intu'vdx=uv-intuv'dx
We must calculate intx^2/e^(2x)dx=intx^2e^(-2x)dx
Let u'=e^(-2x), =>, u=e^(-2x)/(-2)=-1/2e^(-2x)
and v=x^2, =>, v'=2x
Therefore,
intx^2/e^(2x)dx=-1/2x^2e^(-2x)-int-1/2*2x*e^(-2x)dx
=-1/2x^2e^(-2x)+intxe^(-2x)dx
In order to calculate intxe^(-2x)dx, we do the integration by parts a second time
Let u'=e^(-2x), =>, u=e^(-2x)/(-2)=-1/2e^(-2x)
and v=x, =>, v'=1
So,
intxe^(-2x)dx=-1/2xe^(-2x)-int-1/2e^(-2x)dx
=-1/2xe^(-2x)+1/2inte^(-2x)dx
=-1/2xe^(-2x)+1/2*e^(-2x)/(-2)
=-1/2xe^(-2x)-1/4e^(-2x)
Putting it all together
intx^2/e^(2x)dx=-1/2x^2e^(-2x)-1/2xe^(-2x)-1/4e^(-2x)+C
=-((2x^2+2x+1))/4e^(-2x)+C