How do you integrate int x^2/e^(2x) by integration by parts method?

1 Answer
Feb 18, 2017

The answer is =-((2x^2+2x+1))/4e^(-2x)+C

Explanation:

Integration by parts is

intu'vdx=uv-intuv'dx

We must calculate intx^2/e^(2x)dx=intx^2e^(-2x)dx

Let u'=e^(-2x), =>, u=e^(-2x)/(-2)=-1/2e^(-2x)

and v=x^2, =>, v'=2x

Therefore,

intx^2/e^(2x)dx=-1/2x^2e^(-2x)-int-1/2*2x*e^(-2x)dx

=-1/2x^2e^(-2x)+intxe^(-2x)dx

In order to calculate intxe^(-2x)dx, we do the integration by parts a second time

Let u'=e^(-2x), =>, u=e^(-2x)/(-2)=-1/2e^(-2x)

and v=x, =>, v'=1

So,

intxe^(-2x)dx=-1/2xe^(-2x)-int-1/2e^(-2x)dx

=-1/2xe^(-2x)+1/2inte^(-2x)dx

=-1/2xe^(-2x)+1/2*e^(-2x)/(-2)

=-1/2xe^(-2x)-1/4e^(-2x)

Putting it all together

intx^2/e^(2x)dx=-1/2x^2e^(-2x)-1/2xe^(-2x)-1/4e^(-2x)+C

=-((2x^2+2x+1))/4e^(-2x)+C