How do you integrate x2ln2xdx using integration by parts?

1 Answer
Mar 8, 2017

x2ln2xdx=x327(9ln2x6lnx+2)+C

Explanation:

We can integrate by parts using the logarithm as integral part, so that in the resulting integral we have a rational function:

x2ln2xdx=ln2xd(x33)

x2ln2xdx=x3ln2x313x3d(ln2x)

x2ln2xdx=x3ln2x323x3lnxxdx

x2ln2xdx=x3ln2x323x2lnxdx

Solve the resulting integral by parts again:

x2lnxdx=lnxd(x33)

x2lnxdx=x3lnx313x3d(lnx)

x2lnxdx=x3lnx313x3dxx

x2lnxdx=x3lnx313x2dx

x2lnxdx=x3lnx319x3+C

Substituting in the first expression:

x2ln2xdx=x3ln2x323(x3lnx319x3)+C

and simplifying:

x2ln2xdx=x3ln2x329(x3lnx)+227x3+C

x2ln2xdx=x327(9ln2x6lnx+2)+C