How do you integrate int x^2 ln 5x dx ∫x2ln5xdx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Bill K. Feb 17, 2016 Start by letting u=ln(5x)u=ln(5x) and dv=x^2\ dx to ultimately get int \ x^2ln(5x)\ dx=1/3 x^3 ln(5x)-x^3/9+C. Explanation: If you let u=ln(5x) and dv=x^2\ dx, then du=1/(5x) * 5\ dx=1/x\ dx and v=x^3/3. Therefore \int\ x^2ln(5x)\ dx=uv-\int\ v\ du =1/3 x^3 ln(5x)-\int\ x^2/3\ dx=1/3 x^3 ln(5x)-x^3/9+C. Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 6929 views around the world You can reuse this answer Creative Commons License