How do you integrate #int x^2 ln 5x dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Bill K. Feb 17, 2016 Start by letting #u=ln(5x)# and #dv=x^2\ dx# to ultimately get #int \ x^2ln(5x)\ dx=1/3 x^3 ln(5x)-x^3/9+C#. Explanation: If you let #u=ln(5x)# and #dv=x^2\ dx#, then #du=1/(5x) * 5\ dx=1/x\ dx# and #v=x^3/3#. Therefore #\int\ x^2ln(5x)\ dx=uv-\int\ v\ du# #=1/3 x^3 ln(5x)-\int\ x^2/3\ dx=1/3 x^3 ln(5x)-x^3/9+C#. Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 6519 views around the world You can reuse this answer Creative Commons License