How do you integrate int x^2 sin x dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 7, 2016 I = -x^2cos(x) + 2xsin(x) + 2cos(x) + c Explanation: Say u = x^2 so du = 2x, dv = sin(x) so v = -cos(x) I = -x^2cos(x) +2intxcos(x)dx Say u = x so du = 1, dv = cos(x) so v = sin(x) I = -x^2cos(x) + 2xsin(x) - 2intsin(x)dx I = -x^2cos(x) + 2xsin(x) + 2cos(x) + c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 3774 views around the world You can reuse this answer Creative Commons License