How do you integrate int x^2 sin x dx using integration by parts?

1 Answer
Jan 7, 2016

I = -x^2cos(x) + 2xsin(x) + 2cos(x) + c

Explanation:

Say u = x^2 so du = 2x, dv = sin(x) so v = -cos(x)

I = -x^2cos(x) +2intxcos(x)dx

Say u = x so du = 1, dv = cos(x) so v = sin(x)

I = -x^2cos(x) + 2xsin(x) - 2intsin(x)dx
I = -x^2cos(x) + 2xsin(x) + 2cos(x) + c