How do you integrate x2e2x by parts?

1 Answer
Jan 24, 2017

x2e2xdx=e2x4(2x22x+1)+C

Explanation:

Take x2 as finite part, so in the integration by parts the degree of x decreases:

x2e2xdx=12x2d(e2x)=x2e2x2xe2xdx

We can now solve the resulting integral by parts again:

xe2xdx=12xd(e2x)=xe2x212e2xdx

and we can now solve the last integral directly:

e2xdx=12e2x+C

Putting it all together:

x2e2xdx=x2e2x2xe2x2+14e2x+C