How do you integrate int x^2e^(4x)x2e4x by integration by parts method?

2 Answers
Mar 21, 2017

The answer is =e^(4x)(x^2/4-x/8+1/32)+C=e4x(x24x8+132)+C

Explanation:

Integration by parts is

intuv'dx=uv-intu'vdx

Here, we have

u=x^2, =>, u'=2x

v'=e^(4x), =>, v=e^(4x)/4

Therefore,

intx^2e^(4x)dx=(x^2e^(4x))/4-int2x*e^(4x)dx/4

=(x^2e^(4x))/4-1/2intx*e^(4x)dx

We apply the integration by parts a second time to find intx*e^(4x)dx

u=x, =>, u'=1

v'=e^(4x), =>, v=e^(4x)/4

Therefore,

intx*e^(4x)dx=x/4e^(4x)-inte^(4x)dx/4

=x/4e^(4x)-e^(4x)/16

Putting the results together,

intx^2e^(4x)dx=(x^2e^(4x))/4-1/2(x/4e^(4x)-e^(4x)/16)

=e^(4x)(x^2/4-x/8+1/32)+C

Mar 30, 2017

There is a faster method

Explanation:

Introduce t and write
I = int e^(4tx) dx
Now differentiate with respect to t
(dI)/dt = int 4x e^(4tx) dx
Once more
(d^2I)/dt^2 = int 16x^2 e^(4tx) dx
I = e^(4tx)/(4t)
(dI)/dt= x/te^(4tx) - e^(4tx)/(4t^2)
and again
(d^2 I)/(dt^2) = ( 4x^2/t -x/(t^2)-x/t^2 + 2/t^3 1/4)e^(4tx)
(d^2I)/dt^2 = (4x^2-2x + 2)e^(4x)
Our integral is 1/16 I
J= I/16 = (x^2 - x/4 + 1/8)e^(4x)