How do you integrate int x^2e^-xx2ex by integration by parts method?

2 Answers
Jul 24, 2016

= - e^-x ( x^2 + 2x + 2) + C=ex(x2+2x+2)+C

Explanation:

int \ x^2e^-x \ dx

= int \ x^2d/dx( - e^-x) \ dx

which by IBP means
= - x^2 e^-x - int \ - e^-x d/dx(x^2 ) \ dx

= - x^2 e^-x + int \ e^-x * 2x\ dx

setting up one more round of IBP

= - x^2 e^-x + int \ d/dx( - e^-x) * 2x\ dx

= - x^2 e^-x + ( - e^-x)* 2x - int \ - e^-x * d/dx( 2x)\ dx

= - x^2 e^-x - 2x e^-x + 2 int \ e^-x\ dx

= - x^2 e^-x - 2x e^-x - 2 e^-x + C

= - e^-x ( x^2 + 2x + 2) + C

Jul 24, 2016

-e^{-x}(x^2+2x+2+C_1)

Explanation:

d/(dx)(x^n e^{-x})=nx^{n-1}e^{-x}-x^n e^{-x}

Calling I_n = int x^n e^{-x}dx we have

I_n-nI_{n-1}=-x^n e^{-x}

making now J_n = e^xI_n we obtain a simpler recurrence relation

J_n-nJ_{n-1} = -x^n

This recurrence formulation allows us to obtain the general solution for the integral

int x^n e^{-x}dx

Now doing n=2 we have

{(J_2-2J_1=-x^2), (J_1-J_0 = -x) :}

Multiplying the second equation by 2 and adding with the first we obtain

J_2-2J_0=-x^2-2x

but J_0 = e^xI_0 = e^x int e^{-x}dx = -1+C

so

J_2 = e^x I_2 = -x^2-2x-2+2C

Finally

I_2 = -e^{-x}(x^2+2x+2+C_1)