How do you integrate int x^2lnx by parts from [1,2]?

1 Answer
Dec 28, 2016

int_1^2x^2lnxdx=8/3ln2-7/9

Explanation:

int_1^2x^2lnxdx=int_1^2lnx d(x^3/3) = [x^3/3lnx]_1^2 - int_1^2x^3/3d(lnx) = 8/3ln2-int_1^2x^3/3(dx)/x=8/3ln2-int_1^2x^2/3dx=8/3ln2-[x^3/9]_1^2=8/3ln2-7/9