How do you integrate int x^3 e^(x^2 ) dx using integration by parts?

1 Answer
Sep 1, 2016

= 1/2e^(x^2) ( x^2 - 1 ) + C

Explanation:

throughout , remember that d/dx(e^(x^2) )= 2x e^(x^2)

So:
int x^3 e^(x^2 ) dx

setting it up for IBP
= int color(red)(x^2) d/dx(color(blue)(1/2 e^(x^2 ))) dx

so by IBP
= color(red)(x^2) (color(blue)(1/2 e^(x^2 )) ) - int d/dx( color(red)(x^2)) (color(blue)(1/2 e^(x^2 ))) dx

= 1/2 x^2 e^(x^2) - int 2 x * 1/2 e^(x^2 ) dx

= 1/2 x^2 e^(x^2) - int x e^(x^2 ) dx

= 1/2 x^2 e^(x^2) - int 1/2 d/dx( e^(x^2 )) dx

= 1/2 x^2 e^(x^2) - 1/2 e^(x^2 ) + C

= 1/2e^(x^2) ( x^2 - 1 ) + C