How do you integrate #int x^3 ln 2x dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jun 21, 2016 # ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C# Explanation: Using the formulation #\int u v' \dx= [uv] - \int u' v \dx# with #u = \ln (2x), u' = \frac{1}{2x}.2 = \frac{1}{x}# and #v' = x^3, v = \frac{x^4}{4}#, we get # ln(2x) \frac{x^4}{4} - \int \frac{1}{x} .\frac{x^4}{4} \dx # #= ln(2x) \frac{x^4}{4} - \int \frac{x^3}{4} \dx # # = ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 8030 views around the world You can reuse this answer Creative Commons License