How do you integrate (x+3)(x1)5 using substitution?

1 Answer
Jan 15, 2017

(x+3)(x1)5dx=17(x1)6(x+113)+C

Explanation:

You could expand the power of the binomial and integrate using the power rule.

To avoid the burdensome calculation of a fifth power, substitute:

t=(x1)
dt=dx

so that:

(x+3)(x1)5dx=(t+4)t5dt=t6dt+4t5dt=t77+23t6+C

Now substitute back x:

(x+3)(x1)5dx=17(x1)7+23(x1)6+C=17(x1)6(x1+143)+C=17(x1)6(x+113)+C