How do you integrate int x^3lnx by integration by parts method?

2 Answers
Oct 25, 2016

intx^3ln(x)dx=(x^4(4ln(x)-1))/16+C

Explanation:

Integration by parts takes the form:

intudv=uv-intvdu

So, for the integral intx^3ln(x)dx, we see this is intudv and let:

{(u=ln(x)" "=>" "du=1/xdx),(dv=x^3dx" "=>" "v=x^4/4):}

Thus:

intx^3ln(x)dx=uv-intvdu=(x^4ln(x))/4-intx^4/4 1/xdx

Simplifying the integral:

intx^3ln(x)dx=(x^4ln(x))/4-1/4intx^3dx

intx^3ln(x)dx=(x^4ln(x))/4-1/4x^4/4+C

intx^3ln(x)dx=(x^4ln(x))/4-x^4/16+C

intx^3ln(x)dx=(x^4(4ln(x)-1))/16+C

Oct 25, 2016

int x^3lnxdx=1/4x^4lnx - x^4/16 + C

Explanation:

The formula for integration by parts is:
intu(dv)/dxdx = uv - intv(du)/dxdx

Essentially we would like to find one function that simplifies when differentiated, and one that simplifies when integrated (or is at least integrable).

Let {(u=lnx, => ,(du)/dx=1/x),((dv)/dx=x^3,=>,v =x^4/4 ):}

So IBP gives:

int (lnx)(x^3)dx=(lnx)(x^4/4) - int (x^4/4)(1/x)dx
:. int x^3lnxdx=1/4x^4lnx - 1/4int x^3dx
:. int x^3lnxdx=1/4x^4lnx - 1/4(x^4/4) + C
:. int x^3lnxdx=1/4x^4lnx - x^4/16 + C