The formula for Integration by Parts (IBP):int u dv=uv-int v du
Let color(red)(u_1=x^3;dv_1=sinx
Thus, color(red)(du_1=3x^2dx;v_1=-cosx
I=color(red)([x^3][-cosx])-int[-cosx][3x^2dx]
I=color(red)(-x^3cosx)+int3x^2cosxdx
Apply IBP again:
Let color(blue)(u_2=3x^2;dv_2=cosx
Thus, color(blue)(du_2=6xdx;v_2=sinx
I=color(red)(-x^3cosx)+{color(blue)([3x^2][sinx])-int[sinx][6xdx]}
I=color(red)(-x^3cosx)color(blue)(+3x^2sinx)-int6xsinxdx
Apply IBP once more:
Let color(green)(u_3=6x;dv_3=sinx
Thus, color(green)(du_3=6dx;v_3=-cosx
I=color(red)(-x^3cosx)color(blue)(+3x^2sinx)-{color(green)([6x][-cosx])-int[-cosx][6dx]}
I=color(red)(-x^3cosx)color(blue)(+3x^2sinx)-{color(green)(-6xcosx)+6intcosxdx}
Since intcosxdx=color(purple)(sinx+"C"
I=color(red)(-x^3cosx)color(blue)(+3x^2sinx)-{color(green)(-6xcosx)+color(purple)(6[sinx]}}+"C"
I=color(red)(-x^3cosx)color(blue)(+3x^2sinx)color(green)(+6xcosx)color(purple)(-6sinx+"C")