How do you integrate ∫x4lnx by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Sep 24, 2016 ∫xnlnxdx=1n+1(xn+1lnx−xn+1n+1)+C Explanation: ddx(xnlnx)=nxn−1lnx+xn−1 or (n+1)∫xnlnxdx=xn+1lnx−∫xndx so ∫xnlnxdx=1n+1(xn+1lnx−xn+1n+1)+C Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1703 views around the world You can reuse this answer Creative Commons License