How do you integrate #int x^4lnx# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Sep 24, 2016 #int x^n lnx dx = 1/(n+1)(x^(n+1)lnx-x^(n+1)/(n+1))+C# Explanation: #d/(dx)(x^n lnx) = n x^(n-1)lnx+x^(n-1)# or #(n+1)int x^n lnx dx = x^(n+1)lnx-int x^n dx# so #int x^n lnx dx = 1/(n+1)(x^(n+1)lnx-x^(n+1)/(n+1))+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1507 views around the world You can reuse this answer Creative Commons License