How do you integrate int x^n*e^(x^n)dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Nov 19, 2016 int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C Explanation: We know that d/dx(xe^(x^n))=nx^n e^(x^n)+e^(x^n) so int x^n e^(x^n)dx = 1/nx e^(x^n)-int e^(x^n)dx The integral int e^(x^n)dx is a manual integral and is equal to int e^(x^n)dx=-(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C so int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 5126 views around the world You can reuse this answer Creative Commons License