How do you integrate #int x^n*e^(x^n)dx# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Nov 19, 2016 #int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C# Explanation: We know that #d/dx(xe^(x^n))=nx^n e^(x^n)+e^(x^n)# so #int x^n e^(x^n)dx = 1/nx e^(x^n)-int e^(x^n)dx# The integral #int e^(x^n)dx# is a manual integral and is equal to #int e^(x^n)dx=-(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C# so #int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 4880 views around the world You can reuse this answer Creative Commons License