How do you integrate int x^n*e^(x^n)dx using integration by parts?

1 Answer
Nov 19, 2016

int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C

Explanation:

We know that

d/dx(xe^(x^n))=nx^n e^(x^n)+e^(x^n) so

int x^n e^(x^n)dx = 1/nx e^(x^n)-int e^(x^n)dx

The integral int e^(x^n)dx is a manual integral and is equal to

int e^(x^n)dx=-(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C so

int x^n e^(x^n)dx= 1/nx e^(x^n)+(x Gamma(1/n, -x^n))/(n (-x^n)^(1/n) )+C