How do you integrate #int x^nlnx# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Jul 20, 2016 #int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2)# Explanation: #d/(dx)(x^{n+1}log_e x) = (n+1)x^nlog_ex+x^n# then #(n+1)int x^n log_e x dx = x^{n+1}log_e x - 1/(n+1)x^{n+1}# so #int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2)# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1695 views around the world You can reuse this answer Creative Commons License