How do you integrate int x^nlnx by integration by parts method?

1 Answer
Jul 20, 2016

int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2)

Explanation:

d/(dx)(x^{n+1}log_e x) = (n+1)x^nlog_ex+x^n

then

(n+1)int x^n log_e x dx = x^{n+1}log_e x - 1/(n+1)x^{n+1}

so

int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2)