How do you integrate int x^nlnx by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Jul 20, 2016 int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2) Explanation: d/(dx)(x^{n+1}log_e x) = (n+1)x^nlog_ex+x^n then (n+1)int x^n log_e x dx = x^{n+1}log_e x - 1/(n+1)x^{n+1} so int x^n log_e x dx = x^{n+1}(((n+1)log_e x-1)/(n+1)^2) Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1931 views around the world You can reuse this answer Creative Commons License