How do you integrate intxsec^-1(x)dx?

1 Answer
Apr 10, 2018

The answer is =x^2/2arcsecx-1/2sqrt(x^2-1)+C

Explanation:

Perform the integration by parts

intuv'=uv-intu'v

Here,

u=arcsecx, =>, u'=(dx)/(xsqrt(x^2-1))

v'=x, =>, v=x^2/2

Therefore,

intxarcsecxdx=x^2/2arcsecx-1/2int(xdx)/(sqrt(x^2-1))

Let u=x^2-1, =>, du=2xdx

Therefore,

1/2int(xdx)/(sqrt(x^2-1))=1/4int(du)/(sqrtu)

=1/2sqrtu

=1/2sqrt(x^2-1)

And finally,

intxarcsecxdx=x^2/2arcsecx-1/2sqrt(x^2-1)+C