How do you integrate xsec5xdx using integration by parts?

1 Answer
Feb 26, 2016

I don't believe you do.

Explanation:

We can start with u=x and dv=sec(5x), so that

du=dx and v=sec(5x)dx=15ln(tan5x+sec5x)

We get,

xsec(5x)dx=x5ln(tan5x+sec5x)ln(tan5x+sec5x)dx

If you have some way of finding that integral, use it.

Wolfram Alpha gives the original integral as:

xsec(5x)dx=125i(Li2(ie5ix)Li2(ie5ix))+15x(log(1ie5ix)log(1+ie5ix))+C

Where Lin is the polylogarithmic function.

You can read more about the polylogarithmic function here:

http://mathworld.wolfram.com/Polylogarithm.html