How do you integrate int x/(sqrt(1-x^4)) using substitution?

1 Answer
Sep 12, 2016

1/2arcsin(x^2)+C

Explanation:

intx/sqrt(1-x^4)dx

Apply the substitution x^2=sintheta. This implies that 2xdx=costhetad theta. Rearranging then substituting:

=1/2int(2xdx)/sqrt(1-(x^2)^2)=1/2int(costhetad theta)/sqrt(1-sin^2theta)

Note that sqrt(1-sin^2theta)=costheta:

=1/2intd theta

=1/2theta+C

From x^2=sintheta we see that theta=arcsin(x^2):

=1/2arcsin(x^2)+C