How do you integrate int x/(sqrt(1-x^4)) using substitution?
1 Answer
Sep 12, 2016
Explanation:
intx/sqrt(1-x^4)dx
Apply the substitution
=1/2int(2xdx)/sqrt(1-(x^2)^2)=1/2int(costhetad theta)/sqrt(1-sin^2theta)
Note that
=1/2intd theta
=1/2theta+C
From
=1/2arcsin(x^2)+C