How do you integrate int -x/((x+1)-sqrt(x+1))dx?

1 Answer
Feb 20, 2017

-x-2sqrt(x+1)+C

Explanation:

In order to integrate this, we need to use a method called u-substitution, but a good idea is to remove all constants out of the integral first.

int -x/((x+1)-sqrt(x+1))dx=-int x/(x-sqrt(x+1)+1)dx

Let u=sqrt(x+1)

(du)/dx=1/(2sqrt(x+1))

dx=2sqrt(x+1) xxdu=2u du

x=u^2-1

The integral can now be rewritten in terms of u

-int(u^2-1)/(u^2-1-u+1)2u du=-2int(u(u+1)(u-1))/(u(u-1)) du=

-2intu+1 du=-2(1/2u^2+u)+C=-u^2-2u+C=

-(x+1)-2(sqrt(x+1))+C=-x-1-2sqrt(x+1)+C

Since 1 is a constant, we can add it to C, leaving the answer as:

-x-2sqrt(x+1)+C