How do you integrate int xarctanx∫xarctanx by integration by parts method?
1 Answer
Nov 6, 2016
Explanation:
I=intxarctan(x)dxI=∫xarctan(x)dx
Integration by parts takes the form
{(u=arctan(x),=>,du=dx/(1+x^2)),(dv=xdx,=>,v=x^2/2):}
Thus:
I=1/2x^2arctan(x)-1/2intx^2/(1+x^2)dx
Rewrite the numerator or perform polynomial long division of the integrand. Both will result in equivalent simplifications:
I=1/2x^2arctan(x)-1/2int(1+x^2-1)/(1+x^2)dx
I=1/2x^2arctan(x)-1/2int(1+x^2)/(1+x^2)dx-1/2int1/(1+x^2)dx
I=1/2x^2arctan(x)-1/2intdx-1/2int1/(1+x^2)dx
Both of these are simply integrated:
I=1/2x^2arctan(x)-1/2x-1/2arctan(x)+C
Or:
I=((x^2-1)arctan(x)-x)/2+C