How do you integrate int xcos4xxcos4x by integration by parts method?

1 Answer
Oct 22, 2016

intxsin4xdx=(xsin4x)/4+(cos4x)/16+Cxsin4xdx=xsin4x4+cos4x16+C

Explanation:

Use the formula

intu'v=uv -intuv'

So here u'=cos4x so u=(sin4x)/4

and v=x so v'=1

Putting these in the formula

intxsin4xdx=(xsin4x)/4-int(sin4xdx)/4

=(xsin4x)/4+(cos4x)/16+C