How do you integrate int xe^(-x/2) by parts from [0,4]?

1 Answer
Mar 22, 2018

-4(3e^-2-1)

Explanation:

Let's select our values of u, dv and integrate and differentiate for du, v:

u=x
du=dx

dv=e^(-x/2)dx
v=-2e^(-x/2)

Note that our bounds of integration will not change -- we're not performing any substitutions.

So, for definite integrals, we integrate by parts in the following way:

int_a^budv=uv|_a^b-int_a^bvdu

Thus,

int_0^4xe^(-x/2)dx=-2xe^(-x/2)|_0^4 +2int_0^4e^-x/2dx=(-8e^-2)-4e^-(x/2)|0^4=-8e^-2-4e^-2+4=-12e^-2+4=-4(3e^-2-1)