How do you integrate int xe^(x/2)xex2 using integration by parts?

1 Answer
Apr 20, 2018

intxe^(x/2)dx=2e^(x/2)(x-2)+Cxex2dx=2ex2(x2)+C

Explanation:

Make the following selections:

u=xu=x

du=dxdu=dx

dv=e^(x/2)dxdv=ex2dx

v=inte^(x/2)dx=2e^(x/2)v=ex2dx=2ex2

Then

uv-intvdu=2xe^(x/2)-2inte^(x/2)dx=2xe^(x/2)-4e^(x/2)+Cuvvdu=2xex22ex2dx=2xex24ex2+C

Factoring out the exponential, we obtain

intxe^(x/2)dx=2e^(x/2)(x-2)+Cxex2dx=2ex2(x2)+C