How do you integrate ∫xexdx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 9, 2016 I=ex(x−1)+c Explanation: I=∫xexdx Say u=x so du=1, dv=v=ex I=xex−∫exdx I=xex−ex I=ex(x−1)+c Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 17789 views around the world You can reuse this answer Creative Commons License