How do you integrate int xln(1+x)xln(1+x) using integration by parts?

1 Answer
Oct 22, 2016

I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+CI=12x2ln(1+x)14x2+12x12ln(1+x)+C

Explanation:

intu(dv)/dxdx=uv-intv(du)/dxdxudvdxdx=uvvdudxdx

let u=ln(1+x)=>(du)/dx=1/(1+x)u=ln(1+x)dudx=11+x

(dv)/dx=x=>v=1/2x^2dvdx=xv=12x2

I=1/2x^2ln(1+x)-1/2int(x^2/(1+x))dxI=12x2ln(1+x)12(x21+x)dx

I=1/2x^2ln(1+x)-1/2int(x-x/(1 +x))dxI=12x2ln(1+x)12(xx1+x)dx

I=1/2x^2ln(1+x)-1/2int(x-1+1/(x+1))dxI=12x2ln(1+x)12(x1+1x+1)dx

I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+CI=12x2ln(1+x)14x2+12x12ln(1+x)+C