intu(dv)/dxdx=uv-intv(du)/dxdx∫udvdxdx=uv−∫vdudxdx
let u=ln(1+x)=>(du)/dx=1/(1+x)u=ln(1+x)⇒dudx=11+x
(dv)/dx=x=>v=1/2x^2dvdx=x⇒v=12x2
I=1/2x^2ln(1+x)-1/2int(x^2/(1+x))dxI=12x2ln(1+x)−12∫(x21+x)dx
I=1/2x^2ln(1+x)-1/2int(x-x/(1
+x))dxI=12x2ln(1+x)−12∫(x−x1+x)dx
I=1/2x^2ln(1+x)-1/2int(x-1+1/(x+1))dxI=12x2ln(1+x)−12∫(x−1+1x+1)dx
I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+CI=12x2ln(1+x)−14x2+12x−12ln(1+x)+C