need to use integration by parts.
formula is:" "intu(dv)/(dx)dx=uv-intv(du)/(dx)dx ∫udvdxdx=uv−∫vdudxdx
the choice of " "u" " u &" "v v is vital.
if logs are involved then it is usual to take u=lnf(x)u=lnf(x) but try and simplify the expression using the laws of logs first if possible.
intxlnx^3dx=int3xlnxdx∫xlnx3dx=∫3xlnxdx
u=lnx=>(du)/(dx)=1/xu=lnx⇒dudx=1x
(dv)/(dx)=3x=>v=(3x^2)/2dvdx=3x⇒v=3x22
I=(3x^2)/2lnx-int(3x^2)/2xx1/xdxI=3x22lnx−∫3x22×1xdx
I=(3x^2)/2lnx-int(3x)/2dxI=3x22lnx−∫3x2dx
I=(3x^2)/2lnx-(3x^2)/4+CI=3x22lnx−3x24+C
I=(3x^2)/4[2lnx-1]+CI=3x24[2lnx−1]+C