How do you integrate int xln x^3 dx xlnx3dx using integration by parts?

1 Answer
Dec 12, 2016

I=(3x^2)/4[2lnx-1]+CI=3x24[2lnx1]+C

Explanation:

need to use integration by parts.

formula is:" "intu(dv)/(dx)dx=uv-intv(du)/(dx)dx udvdxdx=uvvdudxdx

the choice of " "u" " u &" "v v is vital.

if logs are involved then it is usual to take u=lnf(x)u=lnf(x) but try and simplify the expression using the laws of logs first if possible.

intxlnx^3dx=int3xlnxdxxlnx3dx=3xlnxdx

u=lnx=>(du)/(dx)=1/xu=lnxdudx=1x

(dv)/(dx)=3x=>v=(3x^2)/2dvdx=3xv=3x22

I=(3x^2)/2lnx-int(3x^2)/2xx1/xdxI=3x22lnx3x22×1xdx

I=(3x^2)/2lnx-int(3x)/2dxI=3x22lnx3x2dx

I=(3x^2)/2lnx-(3x^2)/4+CI=3x22lnx3x24+C

I=(3x^2)/4[2lnx-1]+CI=3x24[2lnx1]+C