How do you integrate int xsec^2xxsec2x by parts from [0, pi/4][0,π4]?

1 Answer
May 25, 2017

1/4pi-1/2ln214π12ln2

Explanation:

First without the bounds:

intxsec^2xcolor(white).dxxsec2x.dx

Since integration by parts takes the form intudv=uv-intvduudv=uvvdu, we need to assign values for uu and dvdv. Let:

{(u=x,=>,du=dx),(dv=sec^2xcolor(white).dx,=>,v=tanx):}

So:

intxsec^2xcolor(white).dx=xtanx-inttanxcolor(white).dx

You may know this integral already, but if you're unsure how to find it, the process goes as such:

-inttanxcolor(white).dx=int(-sinx)/cosxdx

Let t=cosx so dt=-sinxcolor(white).dx:

=int(dt)/t=lnabst=lnabscosx

So:

intxsec^2xcolor(white).dx=xtanx+lnabscosx

Applying the bounds:

int_0^(pi/4)xsec^2xcolor(white).dx=[xtanx+lnabscosx]_0^(pi/4)

=pi/4tan(pi/4)+lnabscos(pi/4)-( 0tan0+lnabscos0)

=pi/4(1)+lnabs(1/sqrt2)+(0+lnabs1)

Using 1/sqrt2=2^(-1/2) and ln(a^b)=bln(a):

=pi/4-1/2ln2