How do you integrate int xsec^2x∫xsec2x by parts from [0, pi/4][0,π4]?
1 Answer
Explanation:
First without the bounds:
intxsec^2xcolor(white).dx∫xsec2x.dx
Since integration by parts takes the form
{(u=x,=>,du=dx),(dv=sec^2xcolor(white).dx,=>,v=tanx):}
So:
intxsec^2xcolor(white).dx=xtanx-inttanxcolor(white).dx
You may know this integral already, but if you're unsure how to find it, the process goes as such:
-inttanxcolor(white).dx=int(-sinx)/cosxdx
Let
=int(dt)/t=lnabst=lnabscosx
So:
intxsec^2xcolor(white).dx=xtanx+lnabscosx
Applying the bounds:
int_0^(pi/4)xsec^2xcolor(white).dx=[xtanx+lnabscosx]_0^(pi/4)
=pi/4tan(pi/4)+lnabscos(pi/4)-( 0tan0+lnabscos0)
=pi/4(1)+lnabs(1/sqrt2)+(0+lnabs1)
Using
=pi/4-1/2ln2