How do you integrate int xsin(4x)xsin(4x) by integration by parts method?

2 Answers
Jul 25, 2016

= - 1/4x cos(4x) + 1/16 sin(4x) + C=14xcos(4x)+116sin(4x)+C

Explanation:

int xsin(4x) \ dxxsin(4x) dx

= int x d/dx ( - 1/4 cos(4x)) \ dx

which by IBP:
= - 1/4x cos(4x) + 1/4 int d/dx( x) * cos(4x) \ dx

= - 1/4x cos(4x) + 1/4 int cos(4x) \ dx

= - 1/4x cos(4x) + 1/4 * 1/4 sin(4x) + C

= - 1/4x cos(4x) + 1/16 sin(4x) + C

Jul 25, 2016

-1/4xcos(4x)+1/16sin(4x)+C

Explanation:

Before integrating by parts, we can first use substitution to get rid of the 4x in the sine function.

Let color(purple)(t=4x. This implies that color(green)(dt=4dx and that color(blue)(x=t/4. Thus:

ttintxsin(4x)dx=1/4intcolor(green)4color(blue)xsin(color(purple)(4x))color(green)(dx)=1/4intt/4sin(t)dt=1/16inttsin(t)dt

Now is a better time to use integration by parts, which takes the form:

intudv=uv-intvdu

So, for intcolor(red)tcolor(brown)(sin(t)dt, let:

color(red)(u=t)" "=>" "du=dt

color(brown)(dv=sin(t)dt)" "=>" "intdv=intsin(t)dt" "=>" "v=-cos(t)

This gives us, following intudv=uv-intvdu:

inttsin(t)dt=-tcos(t)-int(-cos(t))dt

=-tcos(t)+intcos(t)dt

=-tcos(t)+sin(t)

Since t=4x:

inttsin(t)dt=-4xcos(4x)+sin(4x)

And since intxsin(4x)dx=1/16inttsin(t)dt, divide the expression by 16:

intxsin(4x)dx=-1/4xcos(4x)+1/16sin(4x)+C