How do you integrate int xsqrt(2x+1)dxx2x+1dx?

1 Answer
Jan 30, 2017

1/15(2x+1)^(3/2)(3x-1)+C.115(2x+1)32(3x1)+C.

Explanation:

Let 2x+1=t^2 :. x=(t^2-1)/2, and, dx=tdt.

Therefore, the Reqd. Integral=int{((t^2-1)/2)(sqrtt^2)(t)}dt

=1/2int(t^4-t^2)dt=1/2(t^5/5-t^3/3)=t^3/30(3t^2-5)

=1/30(t^2)^(3/2)(3t^2-5)

=1/30(2x+1)^(3/2){3(2x+1)-5}

=1/15(2x+1)^(3/2)(3x-1)+C.