How do you integrate int xsqrt(2x^2+7) using substitution?

1 Answer
Jan 22, 2017

I got: intxsqrt(2x^2+7)dx=1/6(2x^2+7)sqrt(2x^2+7)+c

Explanation:

Let us set:
2x^2+7=t
derive:
4x=dt
let us use this inside our integral (red):
int1/4color(red)(4x)sqrt(t)color(red)(dx)=
where I multiplyed and divided by 4:
substituting the red part with the derived bit we get:
int1/4sqrt(t)dt=
integrating:
1/4intt^(1/2)dt=1/4t^(1/2+1)/(1/2+1)+c=1/4t^(3/2)/(3/2)+c=
=1/6tsqrt(t)+c

but: 2x^2+7=t

so we get:
intxsqrt(2x^2+7)dx=1/6(2x^2+7)sqrt(2x^2+7)+c