How do you integrate int xsqrt(4-x)∫x√4−x using substitution?
1 Answer
Explanation:
Let
Then
int color(white)(.)xsqrt(4-x)color(white)(.) dx = int color(white)(.)(u-4)sqrt(u)color(white)(.) du∫.x√4−x.dx=∫.(u−4)√u.du
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = int color(white)(.)u^(3/2) - 4 u^(1/2)color(white)(.) du∫.x√4−x.dx=∫.u32−4u12.du
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = 2/5 u^(5/2) - 8/3 u^(3/2) + C∫.x√4−x.dx=25u52−83u32+C
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = 2/5 (4-x)^(5/2) - 8/3 (4-x)^(3/2) + C∫.x√4−x.dx=25(4−x)52−83(4−x)32+C
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = (2/5 (4-x) - 8/3)(4-x)^(3/2) + C∫.x√4−x.dx=(25(4−x)−83)(4−x)32+C
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = 2/15(3 (4-x) - 20)(4-x)^(3/2) + C∫.x√4−x.dx=215(3(4−x)−20)(4−x)32+C
color(white)(int color(white)(.)xsqrt(4-x)color(white)(.) dx) = -2/15(3x+8)(4-x)^(3/2) + C∫.x√4−x.dx=−215(3x+8)(4−x)32+C