How do you integrate xtan2x using integration by parts?

1 Answer
Aug 26, 2016

Use tan2x=sec2x1 first.

Explanation:

xtan2x=xsec2xx

xdx=x22

xsec2xdx

Let u=x and dv=sec2xdx, so that

du=dx and v=tanx to get

xsec2xdx=xtanxtanxdx.

Now integrate tanx=sinxcosx using substitution u=cosx.

xsec2xdx=xtanx(ln|cosx|)=xtanx+ln|cosx|

Finish by putting it all together.

xtan2x=x22+xtanx+ln|cosx|+C.