How do you integrate int xtan(x^2)sec(x^2) using substitution?
1 Answer
Oct 21, 2016
Explanation:
I=intxtan(x^2)sec(x^2)dx
The first substitution we will make is
I=1/2int2xtan(x^2)sec(x^2)dx
I=1/2inttan(x^2)sec(x^2)(2xdx)
Substituting in our values for
I=1/2inttan(u)sec(u)du
This is the integral for
I=1/2sec(u)+C
Since
I=1/2sec(x^2)+C