How do you integrate int10xsqrt(5x^2-4)10x5x24 using substitution?

2 Answers
Dec 14, 2016

The answer is =2/3(5x^2-4)^(3/2)+C=23(5x24)32+C

Explanation:

We use, intx^ndx=x^(n+1)/(n+1)+Cxndx=xn+1n+1+C(n!=-1)(n1)

Let u=5x^2-4u=5x24, =>du=10xdxdu=10xdx

int10xsqrt(5x^2-4)dx=intsqrtudu10x5x24dx=udu

=intu^(1/2)du=u^(3/2)/(3/2)=u12du=u3232

=2/3(5x^2-4)^(3/2)+C=23(5x24)32+C

See below, another way to solve this question:
enter image source here

Explanation:

Continuation:
enter image source here