How do you integrate int12x^3(3x^4+4)^412x3(3x4+4)4 using substitution?

1 Answer
Oct 30, 2016

Please see the explanation

Explanation:

Given

int12x^3(3x^4 + 4)^4dx12x3(3x4+4)4dx

let u = 3x^4 + 4u=3x4+4, then du = 12x^3dxdu=12x3dx

int12x^3(3x^4 + 4)^4dx = intu^4du = (1/5)u^5 + C12x3(3x4+4)4dx=u4du=(15)u5+C

Reverse the substitution:

int12x^3(3x^4 + 4)^4dx = (1/5)(3x^4 + 4)^5 + C12x3(3x4+4)4dx=(15)(3x4+4)5+C