How do you integrate inte^(1/x)/x^2e1xx2 using substitution?

2 Answers
Feb 16, 2017

-e^(1/x)+Ce1x+C

Explanation:

I = int e^(1/x)/x^2 dxI=e1xx2dx

Let u=1/x -> (du)/dx=-1/x^2u=1xdudx=1x2

:. dx=-x^2du

I = -int e^u/x^2 * x^2 du

= -int e^u/ cancel (x^2) * cancel(x^2) du

=-e^u + C = -e^(1/x)+C

Feb 16, 2017

int e^(1/x)/x^2dx= -e^(1/x)+C

Explanation:

Substitute t=1/x, dt=-(dx)/x^2

int e^(1/x)/x^2dx= -int e^tdt = -e^t+C

and undoing the substitution:

int e^(1/x)/x^2dx= -e^(1/x)+C