How do you integrate ∫ln(2x+1)dx? Calculus Techniques of Integration Integration by Parts 1 Answer Gió May 7, 2015 I would set 2x+1=t 2dx=dt ∫ln(t)dt2= by parts: =12[tln(t)−∫t⋅1tdt]= =12[tln(t)−t+c] but t=2x+1 =12[(2x+1)ln|2x+1|−(2x+1)+c] Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1543 views around the world You can reuse this answer Creative Commons License