How do you integrate intlnx/x∫lnxx using substitution?
1 Answer
Dec 6, 2016
intlnx/xdx = 1/2ln^2x+a ∫lnxxdx=12ln2x+a
Explanation:
Let
Substituting into the integral we get:
\ \ \ \ \ intlnx/xdx = int(lnx)(1/xdx)
:. intlnx/xdx = int(u)(du)
:. intlnx/xdx = intudu
:. intlnx/xdx = 1/2u^2+a
And replacing
\ \ \ \ \ intlnx/xdx = 1/2ln^2x+a