How do you integrate intlnx/xlnxx using substitution?

1 Answer
Dec 6, 2016

intlnx/xdx = 1/2ln^2x+a lnxxdx=12ln2x+a

Explanation:

Let u = lnxu=lnx then (du)/dx=1/x dudx=1x so we can write du=1/xdxdu=1xdx

Substituting into the integral we get:

\ \ \ \ \ intlnx/xdx = int(lnx)(1/xdx)
:. intlnx/xdx = int(u)(du)
:. intlnx/xdx = intudu
:. intlnx/xdx = 1/2u^2+a

And replacing u we get:

\ \ \ \ \ intlnx/xdx = 1/2ln^2x+a