How do you integrate ln(lnx)xdx?

2 Answers
Jun 27, 2016

lnx ln ln x- ln x

Explanation:

This can be done by u substitution. Let lnx =u, so that 1xdx=du

enter image source here

Jun 27, 2016

ln(lnx)xdx=lnxln(lnx)lnx+c

Explanation:

Let z=lnx then dz=dxx

Hence ln(lnx)xdx=lnzdz

Now using integration by parts, if u=lnz and v=z

As udv=uvvdu, we have

lnzdz=lnz×zzdzz=zlnzz

Hence ln(lnx)xdx=lnxln(lnx)lnx+c