How do you integrate # [ln sqrt x] / x#?
1 Answer
Apr 12, 2018
The integral equals
Explanation:
We can rewrite using logarithm laws.
#I = int ln(x^(1/2))/xdx#
#I =int lnx/(2x) dx#
We now let
#I = int u/(2x) * x du#
#I = int 1/2u du#
#I = 1/2(1/2u^2) + C#
#I = 1/4ln^2x + C#
Hopefully this helps!