How do you integrate lnxx?

1 Answer
Apr 12, 2018

The integral equals 14ln2x+C

Explanation:

We can rewrite using logarithm laws.

I=ln(x12)xdx

I=lnx2xdx

We now let u=lnx. Then du=1xdx and then dx=xdu.

I=u2xxdu

I=12udu

I=12(12u2)+C

I=14ln2x+C

Hopefully this helps!