How do you integrate ln(x+1)/x^2ln(x+1)x2?

2 Answers
Jun 3, 2018

-ln(x+1)/x+ln|x/(x+1)|+C, or, ln(x+1)x+lnxx+1+C,or,

ln{|x*(x+1)^(-(1/x+1))|}+Cln{x(x+1)(1x+1)}+C

Explanation:

The Rule of Integration by Parts :

intuv'dx=uv-intu'vdx.

Let, I=intln(x+1)/x^2dx.

We take, u=ln(x+1) and v'=1/x^2.

:. u'=1/(x+1)and v=intv'dx=int1/x^2dx=-1/x.

:. I=-1/xln(x+1)-int{(1/(x+1))(-1/x)}dx,

=-ln(x+1)/x+int1/{x(x+1)}dx,

=-ln(x+1)/x+int{(x+1)-x}/{x(x+1)}dx,

=-ln(x+1)/x+int{(x+1)/{x(x+1)}-x/{x(x+1)}}dx,

=-ln(x+1)/x+int{1/x-1/(x+1)}dx,

=-ln(x+1)/x+{ln|x|-ln|(x+1)|},

=-ln(x+1)/x+ln|x/(x+1)|.

rArr I=-ln(x+1)/x+ln|x/(x+1)|+C,

or, I=-1/xln|x+1|+ln|x/(x+1)|,

=ln(x+1)^(-1/x)+ln|x/(x+1)|,

=ln{|(x+1)^(-1/x)*x/(x+1)|}.

:. I=ln{|x*(x+1)^(-(1/x+1))|}+C.

Enjoy Maths.!

Jun 3, 2018

-log(x+1)/x+log|x|-log|x+1|+C

Explanation:

We use Integration by parts:
int fdg=fg-intgdf

with
f=log(x+1),dg=1/x^2dx
we get
df=1/(x+1)dx,g=-1/x
so we have
-log(x+1)/x+int1/(x*(x+1))dx
=log(x+1)/x+int1/xdx-int1/(x+1)dx
so we get
-log(x+1)/x+log|x|-log|x+1|+C