How do you integrate (ln(x+1)/(x^2)) dx(ln(x+1)x2)dx?

1 Answer
Jul 23, 2016

= - (1/x + 1) ln(x+1) + ln x +C=(1x+1)ln(x+1)+lnx+C

Explanation:

int \ (ln(x+1)/(x^2)) \ dx

= int \ ln(x+1) d/dx( -1/x) \ dx

by IBP this becomes:

=- 1/x ln(x+1) + int \ d/dx (ln(x+1)) * 1/x \ dx

=- 1/x ln(x+1) + int \ 1/(x(x+1)) \ dx

so some partial fractions on this integral

1/(x(x+1)) = A/ x + B/(x+1) = (A(x+1) + B x)/(x(x+1))

x = 0, 1 = A
x = -1, 1 = -B

implies - 1/x ln(x+1) + int \ 1/ x - 1/(x+1)\ dx

= - 1/x ln(x+1) + ln x - ln (x+1) +C

= - (1/x + 1) ln(x+1) + ln x +C