∫ln(x2+13x+40)⋅dx
=xln(x2+13x+40)−∫x⋅(2x+13)⋅dxx2+13x+40
=xln(x2+13x+40)−∫(2x2+13x)⋅dxx2+13x+40
=xln(x2+13x+40)−∫(2x2+26x+80−13x−80)⋅dxx2+13x+40
=xln(x2+13x+40)−∫2dx+∫(13x+80)⋅dxx2+13x+40
=xln(x2+13x+40)−2x+C1+∫(52x+320)⋅dx4x2+52x+160
=xln(x2+13x+40)−2x+C1+∫(26x+160)⋅2dx(2x+13)2−32
A=∫(26x+160)⋅2dx(2x+13)2−32
After using 2x+13=3secy, 2dx=3secy⋅tany⋅dy and x=3secy−132 transforms, A became
A=∫(26⋅3secy−132+160)⋅3secy⋅tany⋅dy9(tany)2
=∫(39secy−9)⋅secy⋅dy3tany
=13∫(secy)2⋅dytany−3∫secy⋅dytany
=13ln(tany)−3∫cscy⋅dy
=132ln((tany)2)−3∫cscy⋅(cscy+coty)⋅dycscy+coty
=132ln((secy)2−1)+3ln(cscy+coty)
=132ln((secy)2−1)+3ln(secy+1tany)
=132ln((secy)2−1)+3ln⎛⎜
⎜⎝secy+1√(secy)2−1⎞⎟
⎟⎠
=132ln((secy)2−1)+32ln((secy+1)2(secy)2−1)
=132ln((secy)2−1)+32ln(secy+1secy−1)
After using 2x+13=3secy and secy=2x+133 inverse transforms, I found
A=132ln(2x+133)2−1)+32ln(2x+133+12x+133−1)
=132ln(4x2+52x+1609)+32ln(x+8x+5)
Thus,
∫ln(x2+13x+40)⋅dx
=xln(x2+13x+40)−2x+C1+132ln(4x2+52x+1609)+32ln(x+8x+5)
=xln(x2+13x+40)−2x+132ln((x2+13x+40)+32ln(x+8x+5)+C
=2x+132⋅ln(x2+13x+40)−2x+32ln(x+8x+5)+C
Note: C=C1−132⋅ln(49)=C1+13ln(32)