How do you integrate ln(x2+13x+40)dx?

1 Answer
Mar 15, 2018

2x+132ln(x2+13x+40)2x+32ln(x+8x+5)+C

Explanation:

ln(x2+13x+40)dx

=xln(x2+13x+40)x(2x+13)dxx2+13x+40

=xln(x2+13x+40)(2x2+13x)dxx2+13x+40

=xln(x2+13x+40)(2x2+26x+8013x80)dxx2+13x+40

=xln(x2+13x+40)2dx+(13x+80)dxx2+13x+40

=xln(x2+13x+40)2x+C1+(52x+320)dx4x2+52x+160

=xln(x2+13x+40)2x+C1+(26x+160)2dx(2x+13)232

A=(26x+160)2dx(2x+13)232

After using 2x+13=3secy, 2dx=3secytanydy and x=3secy132 transforms, A became

A=(263secy132+160)3secytanydy9(tany)2

=(39secy9)secydy3tany

=13(secy)2dytany3secydytany

=13ln(tany)3cscydy

=132ln((tany)2)3cscy(cscy+coty)dycscy+coty

=132ln((secy)21)+3ln(cscy+coty)

=132ln((secy)21)+3ln(secy+1tany)

=132ln((secy)21)+3ln⎜ ⎜secy+1(secy)21⎟ ⎟

=132ln((secy)21)+32ln((secy+1)2(secy)21)

=132ln((secy)21)+32ln(secy+1secy1)

After using 2x+13=3secy and secy=2x+133 inverse transforms, I found

A=132ln(2x+133)21)+32ln(2x+133+12x+1331)

=132ln(4x2+52x+1609)+32ln(x+8x+5)

Thus,

ln(x2+13x+40)dx

=xln(x2+13x+40)2x+C1+132ln(4x2+52x+1609)+32ln(x+8x+5)

=xln(x2+13x+40)2x+132ln((x2+13x+40)+32ln(x+8x+5)+C
=2x+132ln(x2+13x+40)2x+32ln(x+8x+5)+C

Note: C=C1132ln(49)=C1+13ln(32)