How do you integrate (lnx)2x2?

1 Answer
Dec 9, 2016

I=c(lnx)2+2lnx+2x

Explanation:

We have

I=(lnx)2x2dx

If z=lnx then dz=dxx and

z=lnx so ez=x

I=z2ezdz

Integrating by parts

u=z2 so du=2zdz
dv=ezdz so v=ez

I=uvvdu
I=z2ez+2zezdz

Integrating by parts once again

u=z so du=dz
dv=ezdz so v=ez

I=z2ez+2(zez+ezdz)
I=z2ez2zez2ez+c
I=ez(z2+2z+2)+c

But we want to have an answer in terms of x so if we remember that z=ln(x) we'll have

I=eln(x)((lnx)2+2lnx+2)+c
I=c(lnx)2+2lnx+2x